An A245T mutation conveys on cytochrome P450eryF the ability to oxidize alternative substrates.

نویسندگان

  • H Xiang
  • R A Tschirret-Guth
  • P R Ortiz De Montellano
چکیده

Cytochrome P450(eryF) (CYP107A1), which hydroxylates deoxyerythronolide B in erythromycin biosynthesis, lacks the otherwise highly conserved threonine that is thought to promote O-O bond scission. The role of this threonine is satisfied in P450(eryF) by a substrate hydroxyl group, making deoxyerythronolide B the only acceptable substrate. As shown here, replacement of Ala(245) by a threonine enables the oxidation of alternative substrates using either H(2)O(2) or O(2)/spinach ferredoxin/ferredoxin reductase as the source of oxidizing equivalents. Testosterone is oxidized to 1-, 11alpha-, 12-, and 16alpha-hydroxytestosterone. A kinetic solvent isotope effect of 2.2 indicates that the A245T mutation facilitates dioxygen bond cleavage. This gain-of-function evidence confirms the role of the conserved threonine in P450 catalysis. Furthermore, a Hill coefficient of 1.3 and dependence of the product distribution on the testosterone concentration suggest that two testosterone molecules bind in the active site, in accord with a published structure of the P450(eryF)-androstenedione complex. P450(eryF) is thus a structurally defined model for the catalytic turnover of multiply bound substrates proposed to occur with CYP3A4. In view of its large active site and defined structure, catalytically active P450(eryF) mutants are also attractive templates for the engineering of novel P450 activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Communication HOMOTROPIC VERSUS HETEROTOPIC COOPERATIVITY OF CYTOCHROME P450eryF: A SUBSTRATE OXIDATION AND SPECTRAL TITRATION STUDY

P450eryF is the only bacterial P450 to show cooperativity of substrate binding and oxidation. However, the studies reported so far have provided evidence only for homotropic cooperativity of P450eryF but not for heterotropic cooperativity. Therefore, oxidation of 7-benzyloxyquinoline (7-BQ) and 1-pyrenebutanol (1-PB) by P450eryF A245T and spectral binding of 9-aminophenanthrene (9AP) to wild-ty...

متن کامل

Short Communication HOMOTROPIC VERSUS HETEROTOPIC COOPERATIVITY OF CYTOCHROME P450eryF: A SUBSTRATE OXIDATION AND SPECTRAL TITRATION STUDY

P450eryF is the only bacterial P450 to show cooperativity of substrate binding and oxidation. However, the studies reported so far have provided evidence only for homotropic cooperativity of P450eryF but not for heterotropic cooperativity. Therefore, oxidation of 7-benzyloxyquinoline (7-BQ) and 1-pyrenebutanol (1-PB) by P450eryF A245T and spectral binding of 9-aminophenanthrene (9AP) to wild-ty...

متن کامل

Homotropic versus heterotopic cooperativity of cytochrome P450eryF: a substrate oxidation and spectral titration study.

P450eryF is the only bacterial P450 to show cooperativity of substrate binding and oxidation. However, the studies reported so far have provided evidence only for homotropic cooperativity of P450eryF but not for heterotropic cooperativity. Therefore, oxidation of 7-benzyloxyquinoline (7-BQ) and 1-pyrenebutanol (1-PB) by P450eryF A245T and spectral binding of 9-aminophenanthrene (9-AP) to wild-t...

متن کامل

Cloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium

Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...

متن کامل

Cloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium

Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 46  شماره 

صفحات  -

تاریخ انتشار 2000